
Eur. Phys. J. D 11, 25–29 (2000) THE EUROPEAN
PHYSICAL JOURNAL D
c©

EDP Sciences
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Abstract. A non-partial-wave Coulomb-Born theory is recently formulated to treat the excitation of many-
electron atomic ions for impact by an arbitrary charged particle [Y.B. Duan et al., Phys. Rev. A 56, 2431
(1997)]. The multiple expansion of the transition matrix element is decomposed into the target form factor
and the projectile form factor. These are the matrix elements of the tensor operators between quantum
states so that any complicated wave function for the target ion can be employed. In this formal theory, an
infinitesimally small positive quantity ε is introduced artificially to guarantee the convergence of integrals.
As a supplementary part of the theory, we discuss how to choose the value of ε. It is found that the ε
should be taken as functions of the momentum transfer |q| = |ki − kf | and multipolarity λ. Illustrations
are carried out by calculating the cross-sections for some typical transitions nala–nblb of hydrogen-like
ions for impact by electron, positron, and proton, respectively. The resulting cross-sections are in good
agreement with ones produced by using a method available for ion targets with Slater-type orbitals [N.C.
Deb, N.C. Sil, Phys. Rev. A 28, 2806 (1993)]. Comparisons demonstrate that the Coulomb-Born theory
with non-partial wave analysis provides a powerful method to treat the excitation of many-electron atomic
ions impact by an arbitrary charged particle.

PACS. 34.10.+x General theories and models of atomic and molecular collisions and interactions
(including statistical theories, transition state, stochastic and trajectory models, etc.) –
34.80.Kw Electron-ion scattering; excitation and ionization – 34.85.+x Positron scattering

1 Introduction

The Coulomb-Born (CB) approximation has been used
widely to treat atomic ion scattering processes and has
been proved to be a useful and reasonable predictor of the
processes [1,2]. In the CB approximation, the long-range
Coulomb field of the ion is taken care of properly, i.e.,
the Coulomb wave functions replace the plane wave ones
in plane wave Born approximation. Unfortunately, due to
the difficulties encountered in mathematics, the applica-
tions of the CB approximation for a complex ion system
have to depend on partial wave analysis of the projectile
or simple analytic wave functions of the target ion [1–6].
However, partial wave treatments require a large number
of partial waves at high energy and are not useful for im-
pact by heavy particles. On the other hand, most accurate
numerical wave functions can not be used to calculate the
process if non-partial wave analysis is employed.
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Recently Duan et al. [3] noted that if the Coulomb
potential is expressed in terms of the spherical harmonic
expansion with a parameter integral form it is possible
to construct a formal procedure of non-partial wave anal-
ysis within the framework of the CB approximation. A
formalism in non-partial-wave version has been presented
to treat the excitation of many-electron atomic ions for
impact by an arbitrary charged particle. In this model,
the multiple expansion of the transition matrix element
is decomposed into the target form factor and the pro-
jectile form factor. These are the matrix elements of the
tensor operators between quantum states so that any com-
plicated wave function for the target ion can be employed
for the process calculations while the contribution from
all partial waves of the projectile is included. This makes
it possible to apply the CB approximation to treat the
excitation of many-electron atomic ions for impact by a
heavy particle.
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In our formal CB non-partial-wave theory, an infinites-
imally small positive quantity ε has to be introduced
artificially to guarantee the convergence of integrals. As an
important part of the theory, it is necessary to investigate
how to choose the value of ε because this is very important
for subsequent applications of the CB theory. It is found
that the ε should be taken as functions of the momentum
transfer |q| = |ki − kf | and multipolarity λ. Illustrations
are carried out by calculating the cross-sections for some
typical transitions nala–nblb of hydrogen-like ions for im-
pact by electron, positron, and proton, respectively. The
resulting cross-sections are in good agreement with ones
produced by using a method available only for ions with
Slater-type analytic wave functions [4]. These data on ε
may serve as a guide for subsequent applications of the CB
theory to many-electron atomic ions where such a compar-
ison may be not available if an accurate numerically wave
function is wanted. Another aim of the present work is
to provide systematically high-precision data on excita-
tion cross-section of ions for impact by charged particles,
especially by heavy particles. The cross-sections for col-
lision energies from threshold to the high-energy asymp-
totic limit are required to generate the rate coefficients
necessary for many applications in fusion plasma physics
and astrophysics. Due to difficulties of obtaining the cross-
sections in experiment the calculated data is of great in-
terest [1]. The work on how to combine the wave function
code with our dynamics is in progress. In the following
papers, we will generalize our CB method to treat many-
electron ion targets.

A brief report of the non-partial-wave CB theory has
been given recently [3]. To avoid needless repetition, only
the useful results for our discussion are cited in the paper.
The further description of the approach is presented to
supplement the theory.

2 Theory and method

In the CB approximation, the transition matrix for the
excitation of an atomic ion of nuclear Z with N electrons
is given by

Tab =

〈
F

(−)
kf

(Zf , r0)Φb(X)

∣∣∣∣∣∣
∑
j

1
r0j

∣∣∣∣∣∣Φa(X)F (+)
ki

(Zi, r0)

〉
,

(1)

where X represents the set of coordinates of N bound
electrons {rj} and r0 does that of the incident electron.
The Φa(X) and Φb(X) are the initial and final bound state
wave-functions of an ion, F (+)

ki
(Zi, r0) and F (−)

kf
(Zf , r0) are

the Coulomb wave functions with outgoing and ingoing
boundary conditions in the field of nucleus of charge Zi

and Zf .
The Coulomb potential in equation (1) can be ex-

pressed by the spherical harmonic expansion formula

1
r0j

=
∑
λµ

Jλ(r0, rj)Yλµ(r̂0)Y ∗λµ(r̂j) (2)

with

Jλ(r0, rj) = 8
∫

dQjλ(Qr0)jλ(Qrj), (3)

where jλ(x) is the spherical Bessel function and Yλµ(r̂)
is the spherical harmonic function. The integral of equa-
tion (3) is a discontinuous one of Weber and Schafheitlin
[7]. The integral over Q is easily performed and leads to
the famous Laplace formula

1
r0j

=
∑
λµ

4π
2λ+ 1

rλ<
rλ+1
>

Yλµ(r̂0)Y ∗λµ(r̂j), (4)

where r> and r< are the larger and the smaller of r0
and rj , respectively. In the conventional CB theory, equa-
tion (4) is usually used to expand the Coulomb potential.
This leads to that a partial-wave analysis has to be em-
ployed to treat the excitation process if any complicated
wave function of many-electron ion targets is wanted.
Thus, we prefer employing the parameter integral as that
in equation (3). Substitution of equation (2) with equa-
tion (3) into equation (1) yields

Tab(ki,kf) = (4π)2
∑
λµ

∞∫
0

dQDif
λµ(Q)Mab

λµ(Q), (5)

where

Mab
λµ =

〈
Φb(X)
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N∑
j=1

jλ(Qrj)Y ∗λµ(r̂j)

∣∣∣∣∣∣Φa(X)

〉
(6)

and

Dif
λµ =

1
2π2

〈
F

(−)
kf

(Zf , r0) |jλ(Qr0)Yλµ(r̂0)|F (+)
ki

(Zi, r0)
〉
.

(7)

It is easily seen that by introducing a mathematical pa-
rameter integral the multiple expansion of transition ma-
trix is decomposed into two parts: the target form factor
and the projectile distortion one. Equation (6) denotes
the so-called form factor that is the matrix element of
one-particle tensor operators between the atomic bound
states. For discrete excitations, the integral of Yλµ(r̂j) in
equation (6) between the bound state wave functions will
contribute only for a few values of λ owing to the selec-
tion rules for angular momentum eigenstates. Thus, the
infinite summation over λ in equation (5) is reduced to a
finite one [3].

The projectile distortion factor given by equation (7)
is a matrix element of a one-particle tensor of a projectile
between an incident wave and a scattered one. By intro-
ducing the integral representation of the confluent hyper-
geometric function and that of the spherical Bessel func-
tion, the distortion factor of equation (7) can be rewritten
as [3]

Dif
λµ(Q) =

Qλ−1

2λ+1π2i(λ− 1)!

1∫
−1

dt (1− t2)λ−1tSλµ(ki,kf , Q, t) (8)
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with

Sλµ(ki,kf , Q, t)

=
〈
F

(−)
kf

(Zf , r0)
∣∣eiQr0trλ−1

0 Yλµ(r̂0)
∣∣F (+)

ki
(Zi, r0)

〉
= N

(+)
ki

N
(−)∗
kf

(
− 1

4π2

)∮
Γ1

∮
Γ2

p(ηi, t1)p(ηf , t2) dt1dt2

×
[∫

e−α(Q,t)r0rλ−1
0 exp(iq′ · r0)Yλµ(r̂0) dr0

]
, (9)

where

N
(+)
ki

= exp(πηi/2)Γ (1− iηi),

N
(−)
kf

= exp(πηf/2)Γ (1 + iηf),

q′ = ki(1− t1)− kf(1− t2),

and

α(Q, t) = ε− iQt− ikit1 − ikft2, ε→ 0+. (10)

It is in equation (9) that an infinitesimally small positive
quantity ε is introduced artificially to guarantee the con-
vergence of integral. This is the so-called regularization
procedure applied usually in atomic physics to treat di-
vergent integrals.

After carrying out sequentially the integrations over
r0, t1, and t2, equation (9) becomes an analytic form [3]

Sλµ(ki,kf , Q, t) = 4πN (+)
ki

N
(−)∗
kf

(2i)λλ!H, (11)

where

H =
λ∑

l′=0

Cl
′′

l′

l′′∑
v=0

Cl
′

v

l′∑
h=0

(α)h(−l′)h(ε2)h

h!(γ)h

×2 F1(α+ h, β; γ + h; ε1) (12)

with

Cl
′′

l′ =

2(−1)l
′′
[π(2λ+ 1)(λ+ µ)!(λ− µ)!]1/2(1− iηi)λ(1− iηf)l′′

[(2l′ + 1)(2l′′ + 1)(l′!)2(l′′ + µ)!(l′′ − µ)!]1/2λ!l′′!

× kl′i kl
′′

f Yl′0(k̂i)Yl′′µ(k̂f),

Cl
′

v =
(iηi)v(−l′′)v
v!(−λ+ iηi)v

X−OX−R1 (1− Y1/X1)−α,

l′′ = λ− l′, O = λ+ 1− v − iηi, R = v + iηi,

X = (ε− iQt)2 + k2
i + k2

f − 2ki · kf ,

Y = 2[i(ε− iQt)kf + k2
f − ki · kf ],

X1 = (ε− iQt− iki)2 + k2
f ,

Y1 = 2kf [i(ε− iQt) + ki + kf ],

ε1 =
Y1/X1 − Y/X
Y1/X1 − 1

, ε2 =
Y1/X1

Y1/X1 − 1
,

α = iηf , β = O, γ = l′′ + 1,

where (β)α is the Pochhammer symbol

(β)α = β(β + 1)(β + 2) · · · (β + α− 1), (β)0 = 1,
(α = 0, 1, 2, ...),

and 2F1(α, β; γ; z) is the Gaussian hypergeometric func-
tion.

For λ = 0, the distortion factor Dif
λµ(Q) is further re-

duced to a analytic form

Dif
00(Q) =

Q−1

4π2i
[S00(ki,kf , Q, 1)− S00(ki,kf , Q,−1)].

(13)

At this stage, for an arbitrary many-electron ion system
the transition matrix element in equation (1) is reduced
to a two-dimensional integral over Q and t (and rj) which
is to be evaluated numerically.

It is noted that the first and third parameters of the
hypergeometric function 2F1(α, β; γ; z) in equation (12)
increase gradually by unity up to a certain limit. This
fact can be exploited with advantage for the evaluation of
the series. If we calculate only two such successive func-
tions, the others can be obtained from these two by re-
peated use of contiguous relations for the 2F1(α, β; γ; z)
function. This programming scheme saves greatly the com-
puter times for a larger value of the multipolarity λ in
equation (5).

3 Determination of ε and numerical results

To investigate how to choose the value of ε, we simply
analyze the structure of the formulas given in our theory.
It is found from equation (12) that the singularities are
encountered at Qt = ±q in the expressions of X , X1, and
Y1 −X1, i.e.,

X = q2

[
1−

(
Qt

q
+ i

ε

q

)2
]
, (14)

X1 = k2
f

[
1−

(
Qt+ ki

kf
+ i

ε

kf

)2
]
, (15)

Y1 −X1 = (ki + kf)2

(
1 +

Qt

ki + kf
+ i

ε

ki + kf

)2

, (16)

where q is the magnitude of the momentum transfer vec-
tor q = ki − kf . From equation (10) we know that the ε
must be infinitesimally small to guarantee: (a) the conver-
gence of integral and (b) obtaining a interest value of the
integral. Equations (14–16) indicate that the ratios ε/q,
ε/kf , and ε/(ki + kf) should be taken as infinitesimally
small quantities trending towards zero to guarantee the
convergence of integral. Without loss of generality, the ε
can be taken as

ε = δq. (17)
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Table 1. Integrated cross-sections Z4σ (10−17 cm2) of the 1s–
2s excitation of hydrogen-like ions for impact by electron and
positron, respectively.

x e Z = 2 e Z = 8 e Z = 50

2 2.4391a 2.4391b 2.5952a 2.5952b 2.6365a 2.6365b

3 1.6680 1.6680 1.7520 1.7520 1.7726 1.7726
5 1.0192 1.0192 1.0555 1.0555 1.0644 1.0644
10 0.5157 0.5157 0.5263 0.5263 0.5291 0.5291
20 0.2592 0.2592 0.2621 0.2621 0.2629 0.2629
30 0.1731 0.1731 0.1744 0.1744 0.1748 0.1748
40 0.1299 0.1299 0.1307 0.1307 0.1309 0.1309

x e+ Z = 2 e+ Z = 8 e+ Z = 50

2 0.8775a 0.8775b 0.3232a 0.3232b 0.2347a 0.2347b

3 1.0610 1.0610 0.7016 0.7016 0.6110 0.6110
5 0.8361 0.8361 0.7204 0.7204 0.6851 0.6851
10 0.4762 0.4762 0.4554 0.4554 0.4489 0.4489
20 0.2500 0.2500 0.2458 0.2458 0.2446 0.2446
30 0.1691 0.1691 0.1674 0.1674 0.1669 0.1669
40 0.1277 0.1277 0.1268 0.1268 0.1265 0.1265

a The results obtained using Deb and Sil’s method [4].
b The ones obtained in the present work.

By trial and error, we found that the δ depends on the
multipolarity λ. For practical calculations the δ can be
taken as

δ =

{
10−6, for 1s−2s, where λ = 0
10−5, for 1s−2p, where λ = 1.

(18)

Thus, the ε will depend on the magnitude of momentum
transfer vector q and the multipolarity λ.

Using equations (17, 18), we calculated some typi-
cal excitation cross-sections such as 1s−2s and 1s−2p of
the hydrogen-like ions with Z = 2, 8, 50 by electron and
positron impact at incident energies x = ∆E/E = 2 ∼ 40,
where E is the collision energy and ∆E is the excitation
energy. In order to check our results we also calculated the
same excitation processes by using a method only for ions
with Slater-type wave functions proposed by Deb and Sil.
The comparisons between the two kind of calculated re-
sults are shown in Tables 1 and 2, respectively. As shown in
Tables 1 and 2, the present results are in excellent agree-
ment with those produced by Deb and Sil’s method [4]
and have high accuracy at intermediate and high energy
regions.

On the other hand, in order to investigate if our con-
clusions about the ε are still valid for impact by a heavy
charged particle, we calculated the cross-sections of 1s–2s
and 1s–2p excitation of He+ by proton impact at incident
energies x = 102 ∼ 104 using the two methods. The re-
sulting cross-sections from the two methods, as shown in
Table 3, are in good agreement with each other.

Similarly, the values of δ in equation (18) can be de-
termined for higher excitations. It should be emphasized
that the definitions of ε and δ in equations (17, 18) are
of common significance. These data on ε may serve as
a guide for subsequent applications of the CB theory to

Table 2. Integrated cross-sections Z4σ (10−16 cm2) of the 1s–
2p excitation of hydrogen-like ions for impact by electron and
positron, respectively.

x e Z = 2 e Z = 8 e Z = 50

2 1.3843a 1.3843b 1.5019a 1.5018b 1.5315a 1.5315b

3 1.2133 1.2133 1.2636 1.2635 1.2766 1.2766
5 0.9653 0.9653 0.9800 0.9800 0.9840 0.9840
10 0.6540 0.6540 0.6556 0.6556 0.6560 0.6560
20 0.4158 0.4158 0.4155 0.4155 0.4154 0.4154
30 0.3122 0.3122 0.3120 0.3119 0.3118 0.3118
40 0.2529 0.2529 0.2526 0.2526 0.2526 0.2526

x e+ Z = 2 e+ Z = 8 e+ Z = 50

2 0.7619a 0.7619b 0.4678a 0.4678b 0.4003a 0.4003b

3 0.9907 0.9907 0.8549 0.8549 0.8142 0.8142
5 0.9128 0.9128 0.8824 0.8824 0.8726 0.8726
10 0.6498 0.6498 0.6478 0.6478 0.6471 0.6471
20 0.4168 0.4168 0.4173 0.4173 0.4174 0.4174
30 0.3132 0.3132 0.3136 0.3136 0.3137 0.3137
40 0.2536 0.2536 0.2539 0.2539 0.2540 0.2540

a,b The same as in Table 1.

Table 3. Integrated cross-sections Z4σ (cm2) of the 1s–2s, 2p
excitation of hydrogen-like ion He+ for impact by proton.

x 1s–2s ×10−17 1s–2p ×10−16

1× 102 0.8940a 0.8940b 0.0448a 0.0448b

5× 102 5.0249 5.0249 0.9925 0.9925
8× 102 4.9788 4.9788 1.3886 1.3886
1× 103 4.6902 4.6902 1.5245 1.5245
5× 103 1.6448 1.6448 1.3172 1.3172
8× 103 1.0872 1.0872 1.0664 1.0663
1× 104 0.8863 0.8863 0.9494 0.9494

a,b The same as in Table 1.

many-electron atomic ions where such a comparison may
not be available if an accurate numerically wave function
is wanted.

4 Conclusion

From the analysis given in the present work, we found
that the cross-sections obtained by using a formal non-
partial-wave analysis method are in quite excellent agree-
ment with those produced by Deb and Sil’s method [4] and
by the partial-wave analysis method [8] in the CB approx-
imation. This means that the presented non-partial-wave
CB method can be used to provide useful and reliable
cross-sections for the excitation of other complicated ion
systems with numerical wave functions by an arbitrary
particle impact.

We have shown that the Coulomb-Born theory with
non-partial wave analysis provides a powerful method to
compute the cross-sections for the excitation of many-
electron atomic ions impact by an arbitrary charged
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particle. From the viewpoint of methodology, our ap-
proach has following distinguishing features:

(a) for the practical application it should be emphasized
that the appearing of the form factor with harmonic
function is of great significance because the most ac-
curate multi-configuration Hatree-Fock wave-function
can be used for the process calculation;

(b) all the calculations are reduced to two-dimensional
integration at the most;

(c) the results include the contributions from all partial
waves;

(d) the differential cross-sections can be produced.

A systemic improvement of the CB approach by in-
cluding important corrections such as the exchange effect,
the relativistic effect, the second or higher order terms and
so on, in a formal way remains an interesting task for fu-
ture work. Finally, we expect that our formalism will be
able to open up new vistas of the CB approximation.
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